

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТРАНСПОРТНО-СТРОИТЕЛЬНОГО КОМПЛЕКСА

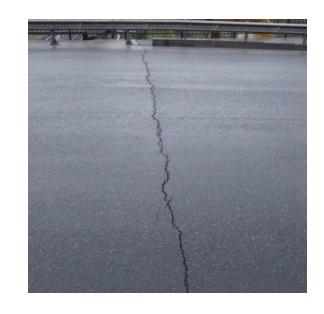
Особенности оценки низкотемпературных свойств битумных вяжущих материалов

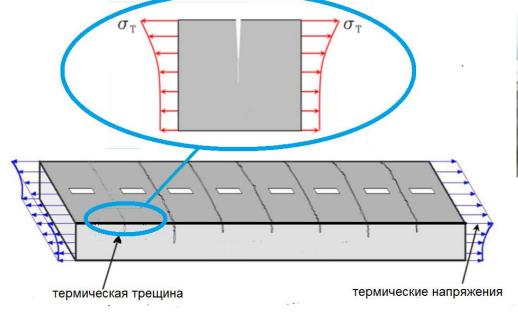
Харпаев А.В. Зам. Руководителя ИЛ АНО «НИИ ТСК»

Виды трещин

По происхождению трещины можно разделить на:

- Отраженные
- Усталостные
- Технологические
- Температурные (термические)





Температурные трещины

Причины образования:

недостаточная прочность на растяжение и недостаточная деформативность

$$\sigma = E \cdot \alpha \cdot \Delta t$$

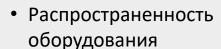
Методы определения низкотемпературных свойств

- Метод определения температуры хрупкости по Фраасу (ГОСТ 33143-2014)
- ▶ Метод определения растяжимости при 0 °С (ГОСТ 33138-2014)
- ▶ Метод определения глубины проникания иглы при 0 °С (ГОСТ 33136-2014)
- ▶ Метод определения жесткости и ползучести при помощи реометра, изгибающего балочку (BBR) (ГОСТ Р 58400.8-2019)
- ▶ Метод определения температуры растрескивания при помощи устройства ABCD (ГОСТ Р 58400.11-2019)
- ▶ Метод определения низкотемпературных свойств с использованием динамического сдвигового реометра (DSR) (ГОСТ Р 58400.9 -2019)

Метод определения температуры хрупкости по Фраасу

- ➤ Температуру хрупкости определяют по методу Фрааса, основанному на образовании трещин при изгибе пленки битума, нанесенной на металлическую пластинку, при непрерывном понижении температуры среды со скоростью 1°С в минуту
- ▶ По методике толщина битумной пленки принята 0,5 мм, что обеспечивает быстрое и равномерное распределение и удерживание битума на пластинке при расплавлении
- Предполагается, что чем ниже температура при которой появилась первая трещина на пластине, тем лучше трещиностойкость битума, но исследования показывают слабую корреляцию с результатами испытаний асфальтобетона
- ✓ Привычное оборудование
- ✓ Небольшое количество материала
- ✓ Испытания проводятся на исходном битуме (экономия времени)

- ✓ Скорость охлаждения не согласуется с реальной при эксплуатации
- ✓ Деформирование материала не моделирует реальные условия
- ✓ Испытания проводятся на исходном битуме (снижение точности прогноза)



Метод определения глубины проникания иглы при 0°C

- ➤ Пенетрация (глубина проникания иглы) при 0°С определяется по величине погружения иглы в битум с грузом 200 г за 60 сек.
- Пенетрация битумов выражается в единицах, равных 0,1 мм проникания иглы в битум
- У Чем выше жесткость материала, тем ниже пенетрация. Пенетрация косвенно характеризует битума жесткость
- Предполагается что чем ниже пенетрация, тем хуже трещиностойкость битума

- Выполняется на исходном битуме
- Небольшое время проведения испытания

- Температура испытания отличается от температуры образования трещин
- Выполняется на исходном битуме
- Все это приводит к снижению точности прогнозирования температуры возникновения трещин при эксплуатации

Методы определения растяжимости, усилий при растяжении и эластичности при 0 °C

- Стандартное, распространенное оборудование
- Испытания выполняются на исходном битумном вяжущем
- Может применяться, как для битума, так и ПБВ

- Образец, установленный в дуктилометр, подвергают растяжению с постоянной скоростью (5 см/мин или 1 см/мин) при 0°C.
- Растяжимостью является удлинение образца в момент разрыва.
- ▶ Растяжимость при 0°С характеризует способность образца к пластическим деформациям при низкой температуре. Считается, что тем выше растяжимость, тем ниже температура при которой битум будет сохранять способность к пластическим деформациям без растрескивания
- Усилия при растяжении позволяют определять энергию деформации для модифицированных битумных вяжущих.
- Эластичность при при 0°С позволяет оценивать эффективность работы полимера при низких температурах, считается что при прочих равных условиях, битумное вяжущее с наиболее оптимальным распределением полимера будет лучше сопротивляться растрескиванию
 - Температура испытания существенно отличается от фактической температуры образования трещин
 - Испытания выполняются на исходном битумном вяжущем
 - Все это приводит к снижению точности прогнозирования температуры возникновения трещин при эксплуатации

Метод определения жесткости и ползучести битума с помощью реометра, изгибающего балочку (BBR)

Сущность метода заключается в определении способности битумного вяжущего сопротивляться нагрузке при отрицательных температурах (жесткость и скорость изменения жесткости) путем воздействия сосредоточенной статической нагрузки на балочку определенных размеров при заданной отрицательной температуре

- Большой опыт применения, как в РФ, так и за рубежом
- Испытание выполняется при низких температурах, близких к реальным

- Не учитывает возможные различия в прочности материала, особенно для модифицированных битумных вяжущих
- Оборудование не производится в РФ
- Необходим опыт и квалификация оператора

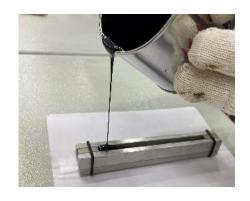
Расчет результатов испытаний

Жесткость битумного вяжущего S(t) в момент времени t секунд, Мпа, вычисляют по формуле:

$$S(t) = \frac{PL^3}{4bh^3\delta(t)},$$

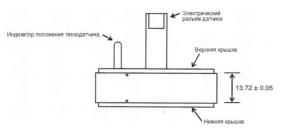
Где P – приложенная нагрузка, H;

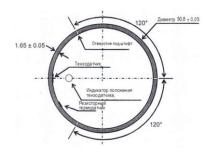
L- длина пролета балочки (расстояние между опорами), мм;

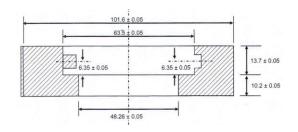

b- ширина балочки, мм;

h- высота балочки, мм;

 $\delta(t)$ - прогиб балочки в течение t секунд, мм.



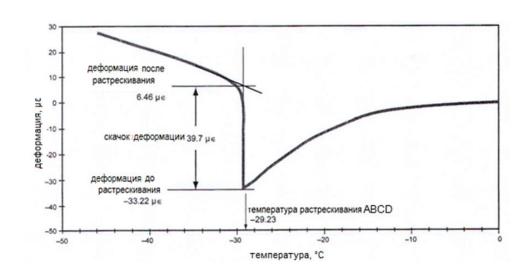


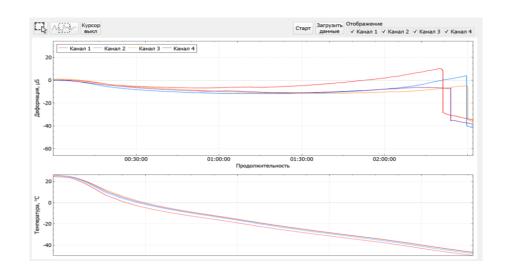

Метод ABCD

Оборудование

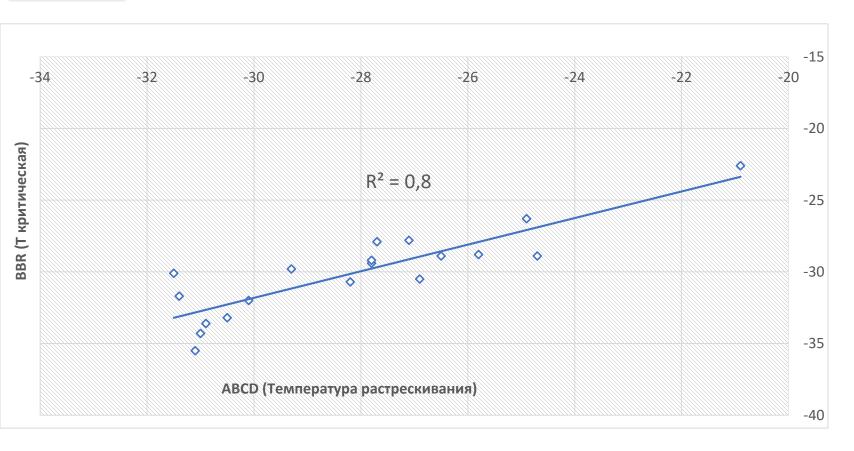
- ✓ Камера климатическая с диапазоном рабочих температуры от минус 60 до 25°C с точностью ± 0,5°C
- ✓ Кольцо устройства для растрескивания битумного вяжущего из инвара
- ✓ инвар (invar): Сплав никеля и стали, имеющий низкий коэффициент линейного теплового расширения. Примечание Коэффициент теплового расширения инвара приблизительно равен 1,2·10-6 °C-1, а у битума приблизительно 6,5·10-4 °C-1
- ✓ Система регистрации и отображения данных с компьютерным управлением

• метод ABCD исключает недостатки описанные в предыдущих методах


Метод ABCD

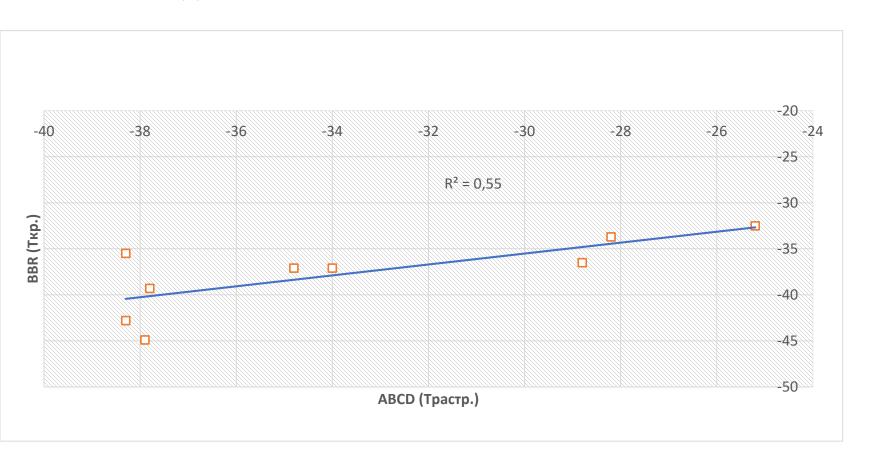

- ✓ Сущность метода заключается в охлаждении образца битумного вяжущего в форме кольца и фиксации скачка деформации.
- ✓ Битумное вяжущее находится вокруг «несжимаемого» кольца из инвара, при охлаждении в результате термического сжатия в битумном вяжущем возникают растягивающие напряжения, которые приводят к его растрескиванию.
- ✓ Момент растрескивания зависит от жесткости (величины нарастания усилий от деформации), релаксации (скорости снижения усилий во времени) и прочности материала (способности выдерживать растягивающие напряжения без растрескивания)

Метод ABCD

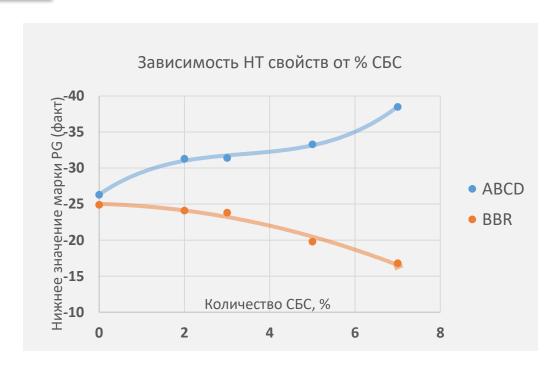


Температуру в климатической камере понижают 20 °C до 0 °C со скоростью 40 °C/ч, а затем от 0 °C до минус 60 °C со скоростью 20 °C/ч.

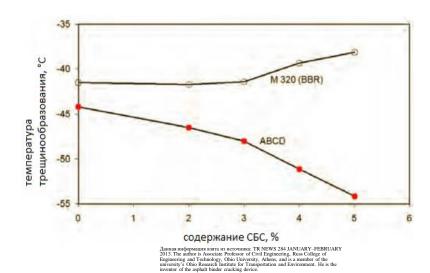
О растрескивании испытуемого образца свидетельствует скачок деформации на графике зависимости деформации от температуры, который отображается на дисплее в режиме реального времени.


Определяют температуру растрескивания ABCD битумного вяжущего по моменту скачка деформации в образце используя график зависимости деформации от температуры,

Результаты битумов (немодифицированных) по HT полученные на BBR и ABCD хорошо согласуются. Методы позволяют получать аналогичные результаты и могут быть применены с одинаковой эффективностью

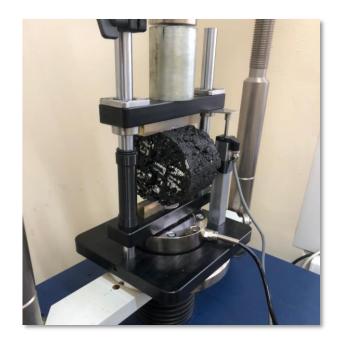


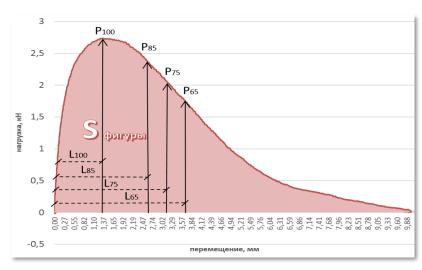
Результаты модифицированных БВ по HT свойствам полученные на BBR и ABCD имеют низкую корреляцию, при этом нижнее значение марки по результатам ABCD в основном ниже(лучше), чем по результатам BBR. При этом чем выше степень модификации тем чаще и больше случаи расхождений. Метод ABCD потенциально более эффективно позволяет оценивать HT свойства модифицированных БВ



Сравнение результатов при различном содержании СБС

При увеличении степени модификации расхождение получаемых нижних значений марки увеличивается, причем результаты полученные с применением метода ABCD позволяют получать более низкое(лучшее) значение марки. Метод ABCD потенциально более эффективно позволяет оценивать HT свойства модифицированных БВ





Индекс трещиностойкости асфальтобетона IDEAL-CTindex (ASTM D8225)

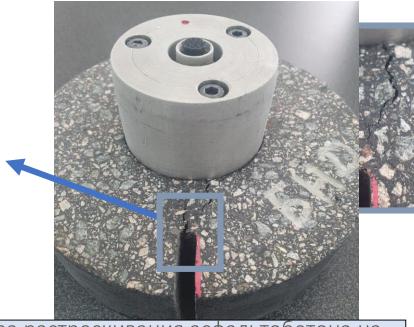
Данный метод испытания позволяет определить индекс трещиностойкости асфальтобетона при непрямом (косвенном) растяжении. В процессе испытания проводится расчёт индекса трещиностойкости исходя из полученного графика зависимости усилие-перемещение. Температура испытания 0 градусов, скорость нагружения 10 мм/мин.

Испытательное устройство IDEAL-CT

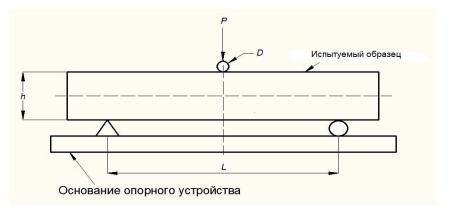
Пример анализа графика усилие-перемещение для определения Индеса трещиностойкости

Наименова ние показатея	А16Вт на БНД	А16Вт на БНД с СБС	SMA-16 на БНД	SMA-16 на БНД с СБС
Индекс трещиносто йкости	7,6	14,3 (+88%)	56,3	81,1 (+44%)

По полученным данным так же можно сделать вывод, что применение модифицированного вяжущего (ПБВ) способствует увеличению трещиностойкости асфальтобетонных смесей при низких температурах.


Сравнение низкотемпературной устойчивости асфальтобетона на БНД и БНД с СБС

Температура растрескивания асфальтобетона на БНД -36 °C


Температура растрескивания асфальтобетона на ПБВ (БНД +5%СБС)
-42 °C

- Образцы готовятся на вращательном уплотнителе.
- Принцип действия как у метода определения температуры растрескивания битумного вяжущего ABCD.
- Производится отечественными производителями.
- Получение реальной температуры трещинообразования при термическом сжатии образца вокруг несжимаемого кольца.

предел прочности на растяжение при изгибе и предельной относительной деформации растяжения асфальтобетонной смеси А5Вл по ГОСТ Р 58406.6

Метод испытания позволяет определить предел прочности на растяжение при изгибе и предельную относительную деформацию растяжения испытуемого образца в момент разрушения после выдерживания при температуре минус 18 °C

Наименование показателя	А5Вл на БНД	А5Вл на ПБВ (БНД+5% СБС)
Предел прочности на растяжение при изгибе, МПа	9,4	8,3
Предельная относительная деформация растяжения	0,005	0,008

Модифицированные и немодифицированные БВ

Проблемы

- Часто применение метода BBR при классификации модифицированных БВ несправедливо сужает температурный диапазон эксплуатации по нижнему значению марки
- Не регламентированы признаки модифицированного БВ
- Действуют сразу два универсальных стандарта ГОСТ Р 58400.1 и ГОСТ Р 58400.2

Модифицированные и немодифицированные БВ

Решения

- Разработать идентификационные признаки по разделению битумных вяжущих на модифицированные и немодифицированные (например, по температурному диапазону эксплуатации)
- Использовать в ГОСТ Р 58400.2 для оценки НТ свойств предпочтительно метод ABCD и принять его арбитражным
- Провести исследования и внести изменения в требования ГОСТ Р 58400.2 с учетом особенностей модифицированных БВ

Спасибо за внимание!